本文目录一览

1,什么是大数据金融

就是建立在大规模数据信息上的金融行为。例如百度推出大数据炒股理财。

什么是大数据金融

2,大数据现在非常火到底什么是大数据能炒股吗

所谓的大数据,简单说是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西,是一种新的分析理念。大数据在一些金融工具中已经有体现了,大家不妨搜一款叫超级云脑的工具,就是用的大数据。
就是通过大量数据统计分析做到预先判断某种趋势倾向,股票涨跌跟庄家有关,是人为的再看看别人怎么说的。

大数据现在非常火到底什么是大数据能炒股吗

3,大数据分析与大数据开发是什么

大数据开发:简单粗略来说就是用工具实现大数据分析后所需要得出的结果。简单理解,大数据开发就是制造软件的,只是与大数据相关而已,通常用到的就是与大数据相关的开发工具、环境等等。大数据分析:简略来说就是从天量的数据中通过算法搜索找出隐藏在其中的信息数据的过程,然后对收集来的大量的信息数据进行详细研究和概括,推断其趋势或者结果,以便于做出判断及采取适当的行动。

大数据分析与大数据开发是什么

4,大数据分析是什么意思

大数据分析可以分为大数据和分析两个方面。如今大数据已经经常出现在报纸新闻当中,但大数据与大数据分析并不是同一概念。假如没有数据分析,再多的数据都只能是一堆储存维护成本高而毫无用处的IT库存。国外发达国家的大数据分析更注重分析,从分析出发去找数据,然后再有效地将从数据中得到的信息有效利用;而国内,对大数据的理解有失偏颇,盲目注重于大数据的采集而未能对收集到的数据有效利用,或许只是简单的画个图表得出表层结论而已,难以对数据的深层价值进行深入挖掘。
数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:   1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。   2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。   3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

5,O2O中的大数据分析到底是分析啥的

主要就是分析用户的位置数据,消费数据,还会员数据,及portal数据。这是商场的核心数据,如果能够好好利用,可以帮商场阶梯化定价,提高平效和拎包率。
线上数据主要包含:访问量(ip uv pv)、平均浏览时长(浏览量)、新uv比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。erp数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率、缺货率、商品价格变化、sku数量变化、周转率、退货率、品类销售占比、会员注册量、注册会员转化率等。客服回访问卷投诉数据主要包含:投诉分类、ui印象、品类印象、价格印象、网站功能印象、物流体验印象、售后印象等。以上数据相互关联,比如分析促销活动效果时,需要分析访问量的变化,注册下单转化率的变化,促销商品和正常商品销量的变化。怎么分析数据?有的公司成立专门的数据分析部门,数据部门不仅提供数据,还要完成数据分析工作。这种工作方式,虽然基础数据准确,但分析结果可能有较大偏差。因为数据分析人员不熟悉业务,对各种信息的了解也不如市场部和运营部等业务部门。比如,某个品类销售占比突然降低,这可能是因为市场部推广方式的改变,也可能是遇到季节因素。如果数据分析人员不了解这些信息,则可能简单的判断成顾客不欢迎这类商品,并且做出建议商品部门降低这类商品占比的决定。更合理的数据分析方式是,由数据专员提供基础数据,由相关部门骨干人员共同分析,比如转化率降低,应该由市场部、运营部、商品部共同分析,得出是由哪些方面的因素造成的。对于新项目而言,可以引入目标分析法,目标分析法是以分析“新客引入成本”和“忠实顾客转化率”为核心,设定合理目标,以此判断商业模式是否可行。比如:某个投资5000万的b2c网站,推广预算是2500万元,目标是稳定达到每天5000单。忠实顾客的定义是平均每月购物一次,每天5000单的销售目标,需要15万忠实顾客。如果实际经营结果数据,新客引入成本是50元,忠实顾客转化率是30%,则要达到15万会员,需要2500万推广费用。通过数据分析可知当新客引入成本大于50元,忠实顾客转化率低于30%时,项目不能达到目标。如果目标和实际业绩数据相差不多,可以通过优化内功改善业绩,如果数据相差太大,则说明商业模式可能不可行,应该早点调整商业模式,并在试错过程中重复以上数据分析步骤。最重要的数据,我认为是流量引入成本,新客引入成本,忠实顾客转化率。流量引入成本数据主要考核市场部,新客引入成本数据由市场部、运营部、商品部共同负责,忠实顾客转化率主要由运营部和商品部负责。推广方面的分析包含流量分析,停留时间,流量页面,转化率分析。流量的增减(新uv数据)代表市场部推广工作是否有效,新客停留时间浏览页面量和转化率等数据,一定程度上代表了市场部推广是否有针对性。新客引入成本分析是推广效率重要的kpi,是每个达成目标投入的推广资金。比如某个推广方法带来了10000个uv,500个注册,100个订单。而这个方法耗费了1万元资金,则每个uv,注册,订单投入的资金分别是1元,20元,100元。这个推广方法的新客引入成本是100元。如何与数据分析结果match?市场部的重要工作是尝试不同的推广方式,计算每种推广的投资回报率,根据数据分析结果,重点投入和侧重优化投资回报率最高的推广方式。提升内功是新客引入成本与忠实顾客转化率优化的基本方法。内功包含:商品结构、促销方式、网站体验、物流体验、顾客回访投诉、会员营销等。商品结构优化目的是通过数据分析了解顾客需求,不断引进和淘汰商品,使商品结构尽量符合顾客需求。建立商品维度表,综合考虑商品所有维度,比如价格、型号、外形、品牌、规格等维度,把商品根据不同维度区分,数据分析各品类各维度的销售量,增加高销量维度商品品类占比,精简低销量维度商品品类占比。商品引进淘汰过程还受到很多因素影响,比如“结构商品”即使销量不好,也不能淘汰,“季节商品”需要把季节因素考虑进去。 促销方式主要依靠数据分析评估效果,每做一次主题促销,就在erp系统中建立促销单据,设置促销主题,促销商品,促销档期。通过bi工具分析促销商品销量变化,促销毛利损失,促销活动带动正常商品销量变化,促销活动带动新会员注册和老会员购物频次变化,综合评估促销效果,以此指导下一次促销活动。网站体验优化可以用一个公式表达:ueo(用户体验优化)= pv / or(站点跳出率),目的降低顾客跳出率,让顾客购物更加简单轻松。这是建立在对网站定位和顾客特点充分了解的基础之上,比如让网站的布局更加清晰,让顾客购物过程更加流畅。通过热点分析,了解顾客关注的位置,把顾客关注的内容放到热点区域。通过跳出率分析,在顾客容易跳出的页面显示推荐内容,吸引顾客继续留在网站。顾客印象问卷投诉数据分析能发现顾客不满意的地方,在网站建立投诉通道,客服部门要对新、老顾客回访。对生成订单、但最后没有提交订单的顾客回访,在ui、品类、价格、网站体验、物流、售后等方面统计数据,分析那个方面最影响顾客体验,根据实际情况逐条解决。不断优化。会员营销是把会员分成不同类型,根据会员特点营销。可以分为:注册未下单顾客、第一次下单顾客、忠实顾客、高价值顾客、流失顾客。注册未下单顾客,如果留有邮箱,要定向发一些大力度的优惠劵,吸引顾客首次下单,直观体验服务。第一次下单顾客要在包裹中放一些有提醒意义的礼品,比如印有广告的鼠标垫,随时提醒顾客,增加顾客二次下单机会。第一次下单顾客可能不清楚我们网站的主要卖点或优势,可以通过包裹或者邮件向顾客灌输这些信息。客服部门要对第一次下单顾客回访,了解他们的感受。忠实顾客是多次重复购买顾客,通过数据分析了解忠实顾客的所需所求,有针对性的做一些推荐,如果有足够的毛利空间,可以为忠实顾客寄送vip卡,维护忠实顾客。针对忠实顾客,发挥积分的作用,向忠实顾客推荐一些积分换购礼品,把忠实顾客发展成口碑推广员,如果忠实顾客邀请了新会员,要对忠实顾客做积分奖励。对流失顾客要针对性营销,了解顾客流失的原因,对流失顾客发优惠劵。高价值顾客购买频次不高,但客单价高,商品毛利高,对这类顾客要推荐高价值商品,如果用对待普通顾客的方式对高价值顾客营销,可能会有反效果。

文章TAG:什么  投资  大数  大数据  什么是投资大数据分析  
下一篇